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Abstract: This paper proposes a new metaheuristic approach, namely, sperm 
motility algorithm (SMA), inspired by the fertilisation process in humans. 
Sperms are randomly diffused inside the female vagina to start searching for 
ovum. Investigation considering the modelling process of the sperm flow 
typical movement is carried out leading to selection of Stokes equations as 
mathematical model. A heuristic mechanism of sperms guided by 
chemoattractant secreted by ovum is to guarantee the progressing towards the 
goal. When the chemoattractant concentration increases the sperms are more 
likely to approach the ovum. Through the mimicking of the whole fertilisation 
process, a search approach to find a global optimisation algorithm is achieved. 
The proposed algorithm is tested using several standard benchmark functions as 
well as two engineering problems. A comparative study of the results with 
those obtained using well-known swarm intelligence algorithms is to validate 
and verify the efficiency of SMA. Getting the benefit of fertilisation 
chemoattractant, the proposed algorithm managed to solve unbounded 
constraint optimisation problems. A global optimal solution was reached in the 
solution of all benchmark problems proving the capability of the new algorithm 
to escape from local optimum. 
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1 Introduction 

Optimisation problems have been an important field and active area of research for 
several decades. The increasing complexities of life lead to complex optimisation 
problems; therefore, continuous development and improvement to optimisation 
algorithms is demanded in order to confront and resolve these problems. There are two 
general approaches to solve optimisation problems, namely, mathematical programming 
and metaheuristic methods (Kaveh and Talatahari, 2010). Mathematical programming as 
deterministic methods uses gradient information to search the solution space near an 
initial starting point. This is a gradient-based method where higher accuracy investigation 
fulfil local search task. However, the variables and cost function of the generators need to 
be continuous. Moreover, a good starting point is vital for these methods to be executed 
successfully. High computational effort is another drawback of deterministic gradient 
methods especially at high-dimensional search space. In many optimisation problems, 
prohibited zones, side limits, and non-smooth or non-convex cost functions need to be 
considered. As a result, these non-convex optimisation problems cannot be solved using 
traditional mathematical programming methods. 

On the other hand, heuristic and metaheuristic methods rely on stochastic algorithms 
to generate different trade of solutions instead of gradients. However, the obtained 
solution values almost converge to same optimal solution with slight differences (Guo  
et al., 2014). Difference between heuristic and metaheuristic cannot easily be recognised 
(Yang, 2011). Heuristic means ‘to find’ or ‘to discover by trial and error’. In 
metaheuristic algorithms, meta – means ‘beyond’ or ‘higher level’, and they generally 
perform better than simple heuristics. All metaheuristic algorithms use certain trade-off 
of local search and global exploration. 

Two important characteristics of metaheuristic are intensification and diversification 
(Gandomi et al., 2013). Intensification intends to search around the current best solutions 
and select the best candidates or solutions. Diversification makes sure that the algorithm 
can explore the search space more efficiently, often by randomisation. (Fister et al., 2013) 
presents brief review of nature-inspired metaheuristic algorithms, where all existing 
algorithms are divided into four major categories: swarm intelligence (SI)-based,  
bio-inspired (but not SI-based), physics/chemistry-based, and other algorithms. The SI is 
drawing inspiration from swarm-intelligence systems in nature depending on the 
collective behaviour of decentralised, self-organised systems, natural or artificial. Particle 
swarm optimisation (PSO) algorithm (Kennedy et al., 1995), ant colony optimisation 
(ACO) (Dorigo, 1992), bat algorithm (BA) (Yang, 2010a), cuckoo search (CS) (Yang and 
Deb, 2009), firefly algorithm (FA) (Yang, 2010b), krill herd (KH) (Gandomi and Alavi, 
2012) are good examples for this category. The second category is bio-inspired (but not 



   

 

   

   
 

   

   

 

   

    Sperm motility algorithm 145    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

SI-based): obviously, SI-based algorithms belong to a wider class of algorithms,  
called bio-inspired algorithms. In fact, bio-inspired algorithms form a majority of all 
nature-inspired algorithms. From the set theory point of view, SI-based algorithms are  
a subset of bio-inspired algorithms, while bio-inspired algorithms are a subset of  
nature-inspired algorithms. That is SI-based ⊂ bio-inspired ⊂ nature-inspired. Many  
bio-inspired algorithms do not use directly the swarming behaviour. Therefore, it is better 
to call them bio-inspired, but not SI-based. For example, genetic algorithms (GA), flower 
algorithm (FA) (Yang, 2012), differential evolution (DE) (Storn and Price, 1997), and 
human-inspired algorithm (Zhang et al., 2009). 

The third category is physics and chemistry based: not all metaheuristic algorithms 
are bio-inspired because their sources of inspiration often come from physics and 
chemistry. For the algorithms that are not bio-inspired, most have been developed by 
mimicking certain physical and/or chemical laws, including electrical charges, gravity, 
river systems, etc., some good example for this category are harmony search (Geem  
et al., 2001), intelligent water drop (Shah-Hosseini, 2007), simulated annealing 
(Kirkpatrick, 1984) and stochastic diffusion search (Bishop, 1989). And the last category 
is other algorithms inspiration away from nature. Consequently, some algorithms are not 
bio-inspired or physics/chemistry-based, for example, differential search algorithm 
(Civicioglu, 2012), grammatical evolution (Ryan et al., 1998), and social emotional 
optimisation (Xu et al., 2010). Muller et al. (2002) developed optimisation algorithm 
based on bacterial chemotaxis, where the way in which bacteria react to chemoattractants 
in concentration gradients plays an important role in reaching the global optimal solution. 
Recently, a modified heuristic informed search techniques in ordered to improve the 
convergence speed and accuracy are introduced as: Mendes et al. (2004) presented the 
fully informed particle swarm FIPS, where considered that all neighbours particle are a 
source of influence no single best neighbour, this mean a particle is attracted to the best 
positions of all the particles. But in the traditional PSO algorithm, a particle is attracted 
toward the best position it has visited (with respect to an objective function). Zhang and 
Yi (2011) proposed scale-free fully informed PSO; they used a modified Barabási-Albert 
as a self-organising construction mechanism, in order to adaptively generate the 
population topology exhibiting scale-free property. They divided the swarm population 
into two subpopulations: the active particles and the inactive particles. The active 
particles fly around the solution space to find the global optima via iteratively updating 
their velocities and positions by using a novel weighted fully informed strategy; whereas 
the inactive particles are gradually activated by the active particles via attaching to them 
according to their own degrees, fitness values, and spatial positions. Qu et al. (2013) 
addressed a distance-based locally informed particle swarm model for multimodal 
optimisation. They used several local bests to guide the search of each particle instead of 
using the global best particle by using the information provided by its neighbourhoods. 
The neighbourhoods are estimated in terms of Euclidean distance. Oca and Stützle (2008) 
studied experimentally the convergence behaviour of the particles in FIPS when using 
topologies with different levels of connectivity. They showed that the particles tend to 
search a region whose size decreases as the connectivity of the population topology 
increases. Cushman (2007) presented a particle swarm approach to constrained 
optimisation informed by global worst. Where a global worst was determined for each 
iteration and added global worst term to velocity equation. 
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In this paper, a new algorithm inspired by the fertilisation process in human is 
proposed. Sperm spread in a random diffusion inside the female vagina to start searching 
for ovum. Investigation considering the modelling process of the sperm flow typical 
movement is carried out and lead to selection of ‘Stokes equations’ as mathematical 
model. A heuristic mechanism of sperms guided by chemoattractant secreted by ovum, is 
to guarantee the progressing towards the goal, when the chemoattractant concentration 
increases the sperms is more likely to approach the ovum. This algorithm includes 
additional measure to reach its goal through a chemoattractant concentration. This seems 
to be more efficient because it can work on the best sperms, rather than sequential sperms 
as in the other informed methods that depend on heuristic function measure between 
population (distance, degree, activity, direction, …, etc.). 

The structure of this paper is organised as follows: Section 2 will introduce 
background on the human fertilisation process from kinetic point of view. Section 3, 
present the develop sperm motility algorithm (SMA). Section 4 present a set of  
well-known test functions along with two design engineering problems. The section also 
presents a performance-based comparison among CS, FA and PSO. Finally, conclusions 
are presented in Section 5. 

2 Background 

2.1 Preliminary 

Sperm is the male reproductive cells, where reproduction requires the unification of male 
and female gametes. 1.5 to 5.0 ml of semen containing between 200 and 500 million 
sperm is randomly diffused at the posterior vaginal fornix (7–9 cm). After ejaculation 
begins one of the most important events in the fertilisation process is the sperm journey 
into the ovum. Sperm rapidly move towards the ovum. The first step, sperm moving from 
the vaginal to the cervix, where the endocervical canal (cervical canal) has an average 
length of 3.0 cm, and has several important functions as: filtering spermatozoa removal 
of seminal plasma, providing a biochemical environment sufficient for sperm storage, 
capacitation, and migration. Cervical mucus is continuously secreted serves many 
important functions, including exclusion of seminal plasma, exclusion of 
morphologically abnormal sperm, and support of viable sperm for subsequent migration 
to the uterus and oviduct. In the second step, moving about 105 of sperm into the uterus 
with a length of about 7–9 cm. More sperm lose their way for several reasons, the most 
important potentially hostile immune cells, so the overwhelming majority do not even 
reach the fallopian tubes, which has a length of about 7–9 cm. Sperm movement through 
the fallopian tube depends on the set of forces: intrinsic sperm motility, tubular muscular 
contraction, and fluid flow (Brannigan and Lipshultz, 2014). Tubal fluid production is 
maximal at the time of ovulation, and this fluid sustains the sperm before fertilisation. 
Tubal fluid may also facilitate both sperm capacitation and acrosomal reaction 
(Brannigan and Lipshultz, 2014). A few sperm arrive at the fertilisation site and one 
sperm penetrates the ovum, after that the ovum moves to the uterus. Sperm demonstration 
is shown in Figure 1. 
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2.2 Sperm guidance 

Sperm movement refers to the ability of sperm to move into an ovum efficiently and 
properly. It was divided into four different grades according to World Health 
Organisation of classification in motility types (Imani et al., 2014): 

Type A Sperm with rapid progressive motility. They have the ability to reach the ovum 
and penetrate the membrane, and this type will be carried over to the next 
generations in our simulation. 

Type B Sperm with slow progressive motility and possibility of reaching the ovum but 
with less possibility of penetrating the membrane. 

Type C Non-progressive motility sperms. They do not move forward despite their 
different movement of tails. 

Type D Immotile or dead sperms. 

Figure 1 Sperm demonstration (see online version for colours) 

 

The effectiveness of sperm motility depends on several factors: in the vagina, cervix and 
uterus the sperm transport depends on sperm motility and muscular activity (Eisenbach 
and Giojalas, 2006). One of the most important factors in sperm guidance is 
chemoattractant concentration gradient by chemotaxis and thermotaxis, where 
chemotaxis, which is the movement of cells up a concentration gradient of 
chemoattractant, and thermotaxis which is the directed movement of cells along a 
temperature gradient (Eisenbach and Giojalas, 2006). May be first guided by thermotaxis 
from the cooler sperm storage site towards the warmer fertilisation site (Bahat et al., 
2003). Sperm chemotaxis plays an important role in the process of fertilisation; the 
gradient of chemoattractant guides the sperm to the ovum (Alvarez et al., 2013). The 
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ovum secretes a chemoattractant, which, as it spread away, forms a concentration 
gradient: a high concentration close to the egg, and a gradually lower concentration as the 
distance from the ovum is longer. Spermatozoa can sense this chemoattractant and orient 
their swimming direction up the concentration gradient towards the ovum. Chemotaxis is 
characterised by directional changes in the movement towards the source of the 
chemoattractant, and their swimming speed increases (this phenomenon is known as 
chemokinesis) (Eisenbach and Giojalas, 2006). There are three types of concentration, 
homogenous, gradient and point source. There are two types of gradient: spatial and 
temporal, Spatial gradient for the chemoattractant concentrations at different locations. 
And temporal gradient for the chemoattractant concentrations at different time points. 
The spatial gradient is a measurement of how the concentration of chemoattractant 
change from one source point to another, and can be described by this equations (1) and 
(2) (Friedrich and Jülicher, 2007; Lin et al., 2004): 

• Linear concentration field: 

0 1( ) ( )c t c c x t= +  (1) 

where c0 = 10 pM (pico-molar) ( )01
0

0.1 cc r=  where r0 is a sperm moving  

length-scale 

• Nonlinear spatial concentration gradient field: 

( )0 1( ) ( ) bc t c c x t= +  (2) 

where c(t) is the concentration, x(t) is the position, c1 and b are the proportion 
coefficient and the power of the major term position, respectively. c0 represent the 
remaining terms. 

2.3 Sperm motility mathematical framework 

Many researchers studied the mathematical modelling of sperm motility as Taylor (1951), 
Hancock (1953), Gray and Hancock (1955), Pozrikidis and others (Montenegro-Johnson 
et al., 2012; Pozrikidis, 2002; Smith et al., 2009a, 2009b; Smith, 2009). Recently, two 
more approaches appeared to study sperm motility: The first approach by Elgeti (2006) 
and several researcher as Elgeti et al. (2010), Marx (2012), Yang (2009) and Yang et al. 
(2010) used molecular dynamics as multi-particle collision dynamics (MPC) also known 
as stochastic rotation dynamics (SRD) where in this simulation the time t is discrete. The 
second approach by Smith et al. (2009b) and Smith (2009) assumed that the fluid (sperm) 
flow obeying the Stokes equation (4). The stokes mathematical model is introduced in 
order to extract the analogy that will, later on, be used in the proposed algorithm to 
specify the particles movement in solution space. 

2Re . ,

0,

v v v p μ v f
t

v x

∂⎛ ⎞+ ∇ + ∇ = ∇ +⎜ ⎟∂⎝ ⎠
∇ ⋅ = ∈ Ω

 (3) 

Leading in the limit Re → 0 to 
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2 ,
0,

p μ v f
v x

∇ = ∇ +
∇ ⋅ = ∈ Ω

 (4) 

where p is the pressure, including the gravitational potential. v is the velocity vector field 
in the domain Ω, μ is kinematic viscosity and f is the force density. Reynolds number can 
be estimated as: 

2 2
2inertial forceRe 10

viscous force
ρv L
μvL

−= = <  (5) 

ρ is stress tensor, L is a characteristic length. Sperm swimming in low-Reynolds-number 
(10–2) environment is good examples for swarm behaviour at small length scales (Yang, 
2009). 

The Stokeslet is the solution of the Stokes flow equations for unit force acting in the 
j-direction and concentrated at ζ, corresponding to taking 

( ) ( ) jf x δ x ζ e= −  (6) 

where δ is Dirac delta distribution centred at ζ, and ej is the appropriate basis vector. 
The i-component of the velocity field driven by this force is written as Sij(x, ζ), and in 

an infinite fluid takes the form 

3
( , ) ij i j

ij
δ r r

S x ζ
r r

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (7) 

Sij(x, ζ) is known as the Stokeslet, or Oseen-Burgers tensor, and 
2 2 2 2 2

1 2 3and | |i i ir x ζ r x δ r r r= − = − = + +  (8) 

δij denotes the Kronecker tensor. The flow due to a force F concentrated at the point ζ 
corresponds to taking 

( ) ( )f x δ x ζ F= −  (9) 

The force density f in equation (4) 

M N D C TF F F F F F= + + + +  (10) 

where elastic structure of the microtubules FM, nexin/radial links FN, dynein links FD, 
forces that represent the cell wall (in the case of ciliary motion) or cell body (in the case 
of flagellar motion) FC, and tethering forces that attach the axoneme to a cell wall or a 
cell body FT. 

The velocity solution corresponding to this fundamental singularity is given by 
(Smith, Gaffney, Blake, et al., 2009; Smith, 2009). 

( ) (1/ 8 ) ( , )i ij jv x πμ S x ζ F=  (11) 

Smith et al. (2009b) and Smith (2009) updated the position using a technique based on 
the Heun second-order algorithm for the numerical solution of ordinary differential 
equations. In this work for simplicity proposed algorithm, we fixed orientation and we 
use trapezoidal second-order rule replace to Heun second-order algorithm for update 
position as the following: 
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( )

( ) ( )

0

1 1

0 1 0 1

, ;
, , ;

( / 2)
1.

n

n n n n

n n n

time step n position x t
calculate velocity v v from data at t t and t t respectively
set x t x δt v v
go to time step n

+ +

+ +

= =
= + +

+

 (12) 

3 The proposed SMA 

3.1 Proposed algorithm 

For simplicity in describing SMA, we set several idealised rules which represent the 
rationale of SMA: 

1 All sperm are attracted toward ovum of their species chemoattractant. 

2 Attractiveness is proportional to chemoattractant concentration and those both 
increase whenever the sperm is close to ovum. 

3 The best healthy or highest quality of sperm – type A – will be carried over to the 
next generations; other less quality sperms – types B, C and D – are neglect with a 
probability Pa ∈ [0, 1]. 

4 One sperm penetrates the ovum, and this rule can be modified to suit the  
multi-objective optimisation as there more than egg as fraternal twins. 

5 More than 250 million sperm swim randomly with velocity vi at position xi forward 
to ovum, where we can described the motility by the stokes equations. 

Based on previous rules, the basic steps of the SMA can be summarised as the pseudo 
code shown below. Actually, sperm populations size N can be very large. However, in the 
computer simulations, we will use a far less population size. Each sperm is characterised 
by a position xi and a continuous velocity vi in the time ti where i = 1, 2, …, N. 
Calculation to generate the sperm position and velocity is performed using equations (7), 
(8) and (11). In equation (8), we assumed that position ζ is xi–1 then: 

1i i ir x x −= −  (13) 

Assume g* to be the term represented the most fit sperm. Using equation (12) to update 
the sperm position seeking for fertilisation by the fit sperm g* yields the following update 
position equation: 

( ) ( )*
1 1( / 2)i i i i ix x δt v v x g+ += + + + −β  (14) 

where g* is the current best solution found among all solutions at the current 
generation/iteration. β is the number random to guarantee the diversity in the quality 
solutions. After that the chemoattractant concentration of equation (2) is checked. This 
value designates one of two cases: the first case is an active sperm or high quality sperm, 
that is moving towards the ovum, indicate that the distance decrease between the sperm 
and ovum, thus, concentration increases. The second case is an inactive sperm or worse 
sperm, which is not moving or moving away from ovum indicate that the distance 
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increase between the sperm and ovum thus, the concentration will be either constant or 
decrease. 

Sperm motility algorithm 
Begin 
Define objective function f(x), x = (x1, x1, …, xd)T 
initialize N sperm population size 
generate initial position x0 and velocity v0 of N sperm 

define c0, β, μ…etc. 
while (t < Maximum Generation) or (stoping criterion); 
 for i=1: N do 
  calculate velocity vi from data at t = ti; equation (11) 
  update position xi for sperm i from equation (14) 
  evaluate each sperm individual according to its position. 
  if new solution is better, updated it in the population 
  calculate ci from equation (2) 
  if ci ≤ ci–1 then neglect [Abandon a fraction (Pa) of worse sperm] 
  Check constraints satisfactions 
 end for 
Sort the population/sperm from best to worst and find the current best. 
end while 
Post-processing the results and visualization. 
End 

3.2 Constraint handling rules 

Expansion and modification feasible-based mechanism proposed by Deb (2000) is used 
to handle the constraints problem and select the best individuals from one generation 
according to the following five rules: 

Rule 1 Between two feasible sperms have same chemoattractant concentration the one 
with the higher fitness value is preferred. 

Rule 2 Between two feasible sperms have same fitness value the one with the higher 
chemoattractant concentration is preferred. 

Rule 3 Priority for chemoattractant concentration on fitness value in feasible solutions 
to avoid trapping into local optima. 

Rule 4 Any feasible sperm is preferred to any infeasible sperm. 

Rule 5 If both sperms are infeasible, the one with the lowest sum of constraint violation 
is preferred. This sum is calculated as: 

( )( ) ( )( )
1 1

max 0, max 0,
pn

j
i j

g x h x ε
= =

+ −∑ ∑  (15) 
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Rule 1 guarantees that the search is directed to the feasible region at better solution. To 
get closer to the global optima, rule 2 is used. To avoid trapping into local optima, rule 3 
is applied. Using rule 4, the search is oriented to the feasible region rather than to the 
infeasible region. To choose sperms leader, even when infeasible, lies closer to the 
feasible region, rule 5 is applied. 

Figure 2 Graphical representation of constraint handling using the proposed algorithm  
(see online version for colours) 

 

To understand this idea better, let us consider the following example: 

• Let us consider sperms in Figure 2: comparing sperms 1 and 2, the two sperm have 
same chemoattractant concentration but different fitness value so sperm 1 wins. It 
has the highest fitness value. 

• Comparing sperms 4 and 5, the two sperms have same fitness value but different 
chemoattractant concentration so sperm 4 wins since it has the highest 
chemoattractant concentration. 

• Comparing sperms 4 and 6, the two sperms have different fitness value and different 
chemoattractant concentration so sperm 4 wins. It has the highest chemoattractant 
concentration although sperm 6 has highest fitness value. 

• Comparing sperms 4 and 7, sperm 4 wins it is feasible. 

• Comparing sperms 3 and 7, the two sperm are infeasible, according to rules 5 sperm 
3 wins, it has smaller sum of constraint violation is preferred and closer to the 
feasible region. 
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4 Test benchmarked function 

SMA is validated using some know benchmark problems obtained from Gandomi and 
Alavi (2012), Hezam et al. (2013), and Jamil and Yang (2013), and two design 
engineering problems (Gandomi et al., 2013; Raouf and Hezam, 2014). In addition, we 
will also compare the performance of the proposed algorithm with CS, FA, and PSO 
algorithms. The algorithms have been implemented by MATLAB R2011 on core (TM) 
i3, 2.27 GHz processor. Where the simulation parameter settings results of CS, FA, and 
PSO algorithms are as follows. 
Table 1 Parameters of CS, FA, and PSO 

CS Number of nests n = 50, discovery rate of alien eggs/solutions pa = 0. 25; 
FA Population size: 50, α (randomness): 0.25, minimum value of β: 0.20, γ (absorption): 1.0 
PSO Population size of 50, the inertia weight W, set to change from 0.9 (wmax) to 0.4 (wmin) 

over the iterations. Set weighting coefficients, c1 = 0.12 and c2 = 1.2. 

Moreover, setting the parameters of the proposed algorithm of equations (2) and (11). 
μ = 10–3 Pa/s is kinematic viscosity (Montenegro-Johnson et al., 2012) and F is the 

total force within the range (37–79 mW milliWatts) (Patrizio et al., 2000), β randomness 
scaling factor, this parameter is essential to guarantee the diversity of solutions. In 
equation (2) set c0 = 10 pM (Friedrich and Jülicher, 2008), in this study we considered b 
is 0.5–2 (Lin et al., 2004). 

4.1 Illustrative small scale problem 

Sphere function (n = 2) have an exact minimum of 0 at (0, 0). 
2

2

1

min ; 100 100; 1, 2.ii
i

x x i
=

− ≤ ≤ =∑  

4.2 Benchmark functions 

The proposed SMA was tested using ten benchmark problems. The results are compared 
to three other swarms intelligent CS, FA and PSO. In order to investigate for the claimed 
improvements, the results obtained proved the capability of the proposed algorithm for 
reaching a competitive solution at a better optimised value. Referring to Table 4, it could 
be notice that a considerable improvement in the near optimal value was obtained 
compared to CS, FA, and PSO algorithms. The better optimised value could be referred 
to the chemoattractant formulation action that performs in a manner close to that of 
informed search techniques. The expected goal position at each iteration (best position) 
will attract all other agents (sperms) to make emphasised search in the nearby promising 
solution space. However, higher convergence time was obtained using SMA with respect 
to that of CS, FA, and PSO algorithms. Large mathematical computations at each 
iteration yield cumulatively a higher convergence time. More investigation is to be 
carried out later on to handle such deficiency. 
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Table 2 Different iterations for small scale problem using SMA algorithm 
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Table 3 The benchmark functions 

ID Function name Formulation Global 
minimum 

Range 
(bounds) 

F01 De-Jong function 
N:5 (dimensions 
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1 1 2 21
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x x
x x
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+ +
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Table 4 Result comparisons on ten test functions 

ID Function  SMA CS PSO FA 
F01 De-Jong 

function N:5 
Best 0.998003837 0.998003838 12.6705058 0.9980038378 
Mean 0.998003838 1.044446848 12.6705058 1.143360007 

Std. dev. 4.3E-010 1.1E-002 2.22E-011 3.3E-002 
Time (s) 80 96 19 136 

F02 Drop-Wave 
function 

Best –1.00E+00 –1.00E+00 –0.9999995 –0.999999999 
Mean –1.00E+00 –0.99999992 –0.99997 –0.99999997 

Std. dev. 0.00E+00 1.9E-007 3.02E-005 2.19E-008 
Time (s) 128 100 23 118 

F03 Hezam 
function 

Best –1 –0.9901 –0.9955 –0.9950 
Mean -0.9853 –0.9822 –0.9656 –0.9848 

Std. dev. 0.0090 0.0067 0.0208 0.0079 
Time (s) 25 20 22 18 

F04 Pathological 
function 

Best –53.24 E+00 –41.215E+00 –40.45E-003 –47.2E-001 
Mean –52.89E+00 –40.77E+00 –36.33E-004 –44.33E-001 

Std. dev. 7.06E-002 2.2E-001 7.21E-004 3.24E-001 
Time (s) 160 154 28 137 

F05 Powell 
function 

Best 2.91E-016 3.99E-013 1.74E-010 5.27E-013 
Mean 2.27E-016 2.44E-011 4.9E-008 2.98E-010 

Std. dev. 2.758E-018 3.47E-011 6.36E-008 5.40E-010 
Time (s) 109 112 61.2 83.3 

F06 Schaffer 
function N:4 

Best 0.500E+00 0.5000009 0.500E+00 0.500001 
Mean 0.500E+00 0.500037 0.500011 0.500044 

Std. dev. 0.00E+00 3.29E-005 2.82E-005 3.26E-005 
Time (s) 135 126 111 201 

F07 Shekel 
function 

Best –10.5364097 –10.5364095 –10.53429 –10.53640 
Mean –10.5364E+00 –10.536322 –10.530721 –10.5363872 

Std. dev. 0.00E-00 1.77E-004 4.08E-005 9.27E-002 
Time (s) 95 124 64 60 

F08 Sine Envelope 
function 

Best –0.749E+00 0.00E+00 0.00E+00 0.00E+00 
Mean –0.735E+00 1.41E-004 5.57E-004 3.78E-004 

Std. dev. 3.12E-004 2.54E-004 3.65E-004 3.99E-004 
Time (s) 6 5 3.5 8 

F09 Styblinski-
Tang function 

Best –1.1749E+003 –1.14E+003 –1.050E+003 –1.161E+003 
Mean –1.169E+003 –1.1E+003 –9.82E+002 –1.085E+003 

Std. dev. 26.02E+002 37.66E+00 35.24E+002 45.68E+00 
Time (s) 66.9 63 5.4 59.9 

F10 Unbounded 
domains 

There exist four global minimisers of f(x) at x1 = ± 1, x2 = ±1, and x3 = 0, 
where f(x) = 0. 
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The proposed SMA algorithm proved the capability of handling special cases as in F03 
where F03 is a multi-peak function problem in the complex plane. Locating multiple 
peaks simultaneously introduces extra difficulties for the existing optimisation methods. 
The function presents large peak centred at coordinates (0, 0) and surrounded by 19 thin 
peaks at height 1.0. Which reaches global minimum –1. 

Drop-wave, Schaffer4, Pathological, and Sine Envelope’s problems are complex 
multimodal functions with a large number of local optima. The basin of the global 
minimum is very narrow and global minimum value is different from the best local 
optimum. As the local optima are not punctual, they form crowns around the global 
optimum, there are in fact an infinite number of local optima that form a sort of a trap 
around the global optimum. 

Therefore, difficult to reach unless a lucky start is made from within the domain of 
attraction of the global minimum. Concentration of chemoattractant may be exploited to 
help local search to escape from local minima and distribute its search efforts in the 
search space. However, SMA algorithm was capable of locating the global maximum of 
the function. 

The proposed SMA algorithm proved the capability of handling unbounded domains 
as in F10 where an unbounded feasible solution is present (Ratschek and Voller, 1990). 
There exist four global minimisers of f(x) at x1 = ± 1, x2 = ± 1, and x3 = 0, where f(x) = 0; 
the SMA was reached for all solutions. The algorithm managed to attract the agents 
moving in open space to the area where the most promising solution is expected. 
Relevant obtained solution is not guaranteed using other SI algorithms at large solution 
spaces. 

4.3 Industry engineering problems 

4.3.1 Corrugated bulkhead design 
Corrugated bulkhead design is often used in chemical tankers and product tankers in 
order to help facilities cargo tank washing effectively. This problem is as an example of 
minimum-weight design of the corrugated bulkheads for a tanker. Four design  
variables of the problem are width (b), depth (h), length (l), and plate thickness (t) for 
minimum-weight design of the corrugated bulkheads for a tanker, the mathematical 
formula for the optimisation problem as follows (Gandomi et al., 2013): 

( )2 2

5.885 ( )Minimise : ( , , , ) t b lf b h l t
b l h

+=
+ −

 

( )( )2 2
1

10.4 8.94 0
6

g th b b l h⎛ ⎞= + − + − ≥⎜ ⎟
⎝ ⎠

 

( )( )( )
4
32 2 2

2
10.2 2.2 8.94 0

12
g th b b l h⎛ ⎞= + − + + − ≥⎜ ⎟

⎝ ⎠
 

3 0.0156 0.15 0g t b= − − ≥  

4 0.0156 0.15 0g t l= − − ≥  
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5 1.05 0g t= − ≥  

6 0, 0 , , 100 and 0 5g l h b h l t= − ≥ ≤ ≤ ≤ ≤  

The comparison result of minimum-weight and the statistical values of the best solution 
obtained by the SMA algorithm and Gandomi et al. (2013) are given in Table 5. The best 
minimum-weight in this study is 7.008391 with thickness 1.05 cm. while using Gandomi 
et al. (2013) obtained 5.894331, with thickness 0.7306255. In Gandomi et al. also the 
constraint g5 is unverified and must be at least 1.05. Results are obtained from SMA 
algorithm is better than the results obtained using Gandomi et al. (2013). It gave us a 
greater thickness, with a slight increase in minimum-weight and verify all the constraints 
of given problem. While Gandomi et al. (2013) got minimum-weight but did not verify 
all the constraints. Thickness is very small leading of poor quality. If we exclude 
thickness constraint we could get a better result than that of (5.894331). Since t is 
between (0–5) when t approaches to zero, b also approaches to zero. 
Table 5 Comparison results of the corrugated bulkhead design example 

 b (cm) h (cm) l (cm) t (cm) Best Average SD 
SMA 57.69231 37.26590 57.69231 1.05 7.008391 7.0093 0.0012 
Gandomi 
et al. 
(2013) 

37.117949 33.035021 37.193939476 0.73062 5.894331 5.988257 0.06436 

4.3.2 Design of a gear train 
Figure 3 shows the gear train problem (Gandomi et al., 2013; Raouf and Hezam, 2014). 
A gear ratio between the driver and driven shafts must be achieved when designing a 
compound gear train. The gear ratio for gear train is defined as the ratio of the angular 
velocity of the output shaft to that of the input shaft. It is desirable to produce a gear ratio 
as close as possible to 1/6.931. For each gear, the number of teeth must be between 12 
and 60. The design variables Ta, Tb, Td, and Tf are the numbers of teeth of the gears a, b, d 
and f, respectively, which must be integers. 

( ) ( )1 2 3 4, , , , , , TT
d b a fx T T T T x x x x= =  

The optimisation problem is expressed as: 
2 2

1 2

3 4

1 1min
6.931 6.931

subject to 12 60 1, 2, 3, 4

d b

a f

i

T T x xz
T T x x

x i

⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦= − = −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦⎝ ⎠
≤ ≤ =

 

The constraint ensures that the error between obtained gear ratio and the desired gear 
ratio is not more than the 50% of the desired gear ratio. 
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Figure 3 A gear train (see online version for colours) 

 

Figure 4 Memory usage indicator (see online version for colours) 
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Table 6 Comparison results of the SMA, CS, FA and PSO 

 SMA CS FA PSO 
Best 2.7E-012 2.70009E-012 2.7E-012 2.700857E-012 
Error (%) 0% 9.0000e-017% 0% 8.5700e-016% 
Mean 2.7E-012 1.04E-010 5.1314E-012 1.1371E-011 
Std. dev. 0.00E+00 2.7E-010 7.6868E-012 1.01307E-011 
Time (s) 95 65 65 45 
Memory utilisation 496 498 499 600–620 

The comparison resulted obtained by the SMA, CA, FA and PSO algorithms are given in 
Table 6, The comparison in terms of the best, error, mean, standard deviation values, 
convergence time and the amount addressed memory resources. These values where 
obtained out of 20 independent runs. 

The result indicates a better achievement for SMA, except the convergence time. It 
could be referred to the large number of parameters and complex equations for velocity 
calculation. The proposed algorithm managed to obtain lower memory utilisation levels 
as shown in Figure 4. 

5 Conclusions 

A novel sperm motility metaheuristic algorithm, inspired by the fertilisation process in 
human was developed. Investigation considering the selection of the best mathematical 
modelling process of the sperm flow typical movement is carried out. The ‘Stokes 
equations’ was chosen as the best representing model to sperm flow. A heuristic 
mechanism of sperms guided by chemoattractant secreted by ovum was mathematically 
modelled making it more likely to the moving agent (sperm) to approach the goal 
(ovum). A search approach algorithm to find a global optimisation algorithm is achieved. 
The proposed algorithm is tested using several standard benchmark functions and two 
engineering problems. A comparative study of the results versus those obtained using 
well-known SI algorithms were introduced to validate and verify the efficiency of SMA. 
Getting benefit of chemoattractant, the proposed algorithm managed to solve unbounded 
constraint optimisation problems. A global optimal solution was reached regarding all the 
used benchmark problems, proving the capability of the new algorithm to escape from 
local optimal. The proposed algorithm can extend to handle multi-objective optimisation 
where more than one ovum as in fraternal twins could be assumed. 
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